
 Page 1	

Research

Comparing vendor solutions for
API-enabling the mainframe

Mainframe API tools:

Competitive
Assessment

Author: Steve Craggs
February 2019
Version 1.00

 Page 2	

Table of Contents
Executive Summary .. 1

Introduction ... 3

Screen-scraping .. 3

ESBs ... 3

Programmatic access .. 3

GT Software .. 5

Mainframe API functionality 5

HostBridge .. 8

HostBridge products .. 8

IBM ... 11

IBM z/OS Connect EE 11

MuleSoft .. 14

MuleSoft Anypoint ... 14

OpenLegacy ... 17

OpenLegacy products 17

Rocket Software .. 20

Rocket API .. 20

Mainframe API functionality 21

Summary .. 23

 Page 1	

Executive Summary
The API Economy is booming, and with such huge historic investments in mainframes it is vital for
companies to find ways to bring these assets into the API world. The Lustratus report “Best of Breed API
Middleware for Mainframes” examined the challenge of API-enabling mainframes and developed a checklist
of key functions for buyers to use in discussions with prospective suppliers. It identified the following API
software segmentation, distinguishing between generic API Management middleware and mainframe-
specific API middleware.

Figure 1: The Lustratus view of API-enablement software for the mainframe

This assessment looks at six different vendors of mainframe API middleware, covering what each offers and
providing a view on how well each addresses the various checklist items. The focus of this assessment is
primarily on the mainframe-specific API middleware rather than the more generic API management
middleware. Some vendors could be classed as API Management vendors that also provide some
mainframe connectivity. Others are specialist mainframe vendors that usually have partnerships with one or
more API Management vendors to cover the generic requirements. There are even some that try to cover
both areas.

Finding the best match will depend to a large extent on the mainframe API requirements the buyer wants to
address. For example, if the target is to make available a small number of fairly simple CICS transactions
with a modern look and feel on various devices, this can be achieved relatively easily with little need for a
mainframe-skilled partner. However, if various mainframe environments such as CICS, IMS, IDMS or Batch
have assets to be exposed as APIs, spanning simple queries to complex, conversational transactions, the
mainframe skills and experience of the chosen supplier is likely to be far more important.

The assessment is highly subjective and not intended to be definitive in any way, but rather it aims to guide
buyers on some of the questions to ask as they evaluate the different solutions. The table below indicates
the level of support of each vendor, using the following scheme:

 Page 2	

 GT Software

HostBridge IBM MuleSoft OpenLegacy Rocket

Mainframe-oriented service
composition

Bottom-up and top-down
service development

Support for web services

Minimal code generation

Automation facilities

Language support

Support for additional
mainframe resources

Added-value orchestration

Ease-of-use

API Ecosystem support

Testing tools

Governance and lifecycle
support

Mainframe experience

API analytics support

Admin support for API
ecosystem

Security

Monitoring and problem
determination

Integration with existing
management framework

Bi-directional support

Choice of processing location

Performance / scalability

Exploit native operating system
high performance options

Figure 2: Mainframe API vendor comparison table

 Page 3	

Introduction
Before looking at the vendor solutions, it is worth taking a high level look at the three main approaches
generally used to solving the problems of exposing mainframe applications as APIs:

 Screen-scraping
 Enterprise Service Bus (ESB)
 Programmatic access (Connectors / Adapters)

Vendors will generally offer one or more of these approaches. Choosing the most appropriate approach will
depend on the mainframe assets that need to be exposed as APIs.

Screen-scraping
Screen-scraping is one of the earliest forms of opening up mainframe applications to external applications.
In simple terms, since many mainframe applications operate with 3270 screens, by driving a 3270 data
stream an external program can appear to the mainframe as an actual 3270 screen. Normally, the client side
will present the user with a different interface, for example for mobile devices, and then when the input data
is entered this is then mapped to the desired 3270 data stream to drive the required mainframe application.
A simple example might be a CICS transaction to return customer data from a customer number. A client
application can use any UI it wishes to gather the customer number, then map the information into a 3270
stream, execute it on the mainframe, gather the responding 3270 stream and map it back to the local UI.

The obvious advantage of this approach is that the mainframe is totally unaware that the mainframe
application is being driven externally; it thinks it is talking with a local 3270 screen. No changes are required
to mainframe applications at all. However there are a number of major downsides to this approach. If the
mainframe application is heavily conversational, for instance, every interaction requires a trip back to the
user location and then return to the mainframe, together with the mapping of a new data stream. The result
is that performance suffers dramatically, and the approach lacks in scalability. Screen-scraping is best suited
to situations where there are a small number of simple in/out transactions that need to be exposed as APIs;
for anything beyond that, it is likely to prove brittle and a drag on performance.

ESBs
The whole point about an Enterprise Service Bus (ESB) is that it provides efficient connectivity between
different systems. As such, it can certainly be used to provide connectivity between mainframes and external
systems. However, once into the mainframe, it has to have some way to drive the desired mainframe
activity. One way to achieve this is to ‘message-enable’ the mainframe applications, so they can be driven
through the receipt of ESB messages and return output the same way. This can be an efficient and scalable
way to operate in execution terms, but it does require the mainframe applications to be altered to message-
enable them. This can be quite a complicated task, and requires a range of mainframe specialist
programming skills.

In order to make the job easier, ESB vendors typically offer a range of adapters or connectors that are
designed to key off the messaging provided by the ESB but then interoperate with a target application or
environment. Some of these adapters / connectors may be for mainframe systems such as CICS. Using
these provides another way for accessing mainframe applications and resources, but typically will still
require work to fit the mainframe applications to the provided adapter interface. Connectors and adapters
are specific examples of the third category, programmatic access.

Programmatic access
The programmatic access approach to accessing mainframe applications and data is the most flexible and
powerful. Most mainframe systems such as CICS and IMS have various means of driving activities
programmatically. For example, CICS applications often support some form of external call or link access,

 Page 4	

usually using the COMMAREA to provide parameters to the CICS application and fields for the response. By
using these programmatic interfaces, programs can be driven efficiently and effectively. An external client
makes the request from its UI, the input parameters are mapped to those required for the application, the
application is executed and the answer returned. Once the framework to operate in this fashion is set up,
often all that is required to drive a new program is for a developer to specify how the data fields map
between the client (for example JSON) and the target environment (eg a CICS COMMAREA).

This approach has some distinct advantages. Assuming the target applications are already enabled for
some form of programmatic access, no further changes to the programs are required. Since this mechanism
is actually the way a lot of CICS programs interact anyway, many of them will be designed to support this.
This approach is flexible and generally scalable. One exception though is that for access to a string of
mainframe activities, some of the same scalability/performance issues encountered with screen-scraping
may arise in that there will be potentially frequent trips to and from the mainframe with the corresponding
mapping from one format to the other and back again. Some vendors however will provide some sort of
mainframe-resident agent that can carry out a chain of different mainframe applications before returning with
the answer.

The final point to note is that providing a comprehensive programmatic access solution will almost certainly
require the vendor to have extensive mainframe experience and skills.

APIs and the OpenAPI standard
The three approaches listed each provide evolving ways to access mainframe resources and applications,
but so far there has been no mention of APIs. In simple terms, the API technology is what makes these often
highly technical mainframe access options consumable in many different environments and with minimal
mainframe skills.

This challenge has been tackled before, most notably with the concept of SOAP-based web services. With
SOAP web services, the web service consumer can gain the required information to drive a mainframe-
based service through the WSDL description of the service. For some mainframe operations, SOAP-based
web services may still be the most desirable option, particularly where the rigorous nature of SOA message
structures are required for such things as message encryption. But the less complex, simpler approach is to
use RESTful APIs. The new OpenAPI standard provides the way to describe and invoke the API, making it
simple to invoke the mainframe activity from different platforms and technology bases. Of course, technology
will still be required under the covers based on one or more of the previously listed mainframe access
approaches, but this can all be done by the API middleware transparently to the consumer of the service.

Bearing these approaches in mind, the next topic is to look at the six vendors of mainframe API-enabling
tools in more detail. The vendors considered are (in alphabetical order):

 GT Software
 HostBridge
 IBM
 MuleSoft
 OpenLegacy
 Rocket Software

 Page 5	

GT Software
GT Software has spent the last three decades working with IBM mainframe customers to help them get the
best out of their assets. As a mainframe-based company it offers a range of mainframe-specific products
and packages, but the key one in terms of the scope of this paper is Ivory Service Architect, more commonly
referred to simply as Ivory. This product suite is designed to leverage and optimize mainframe assets within
the wider IT world, turning mainframe system of record applications, processes and data into APIs and
enabling these systems of record to utilize APIs themselves.

GT Software’ Ivory Service Architect fits within the Lustratus API architecture as follows:

Figure 3: GT Software Ivory’s position in the mainframe API architecture

Mainframe API functionality
Ivory is a set of tools for making existing mainframe applications available to other users, either externally or
within the mainframe. Ivory services are created using a graphical IDE, Ivory Studio, to produce metadata
describing the desired functionality. Once created, these Ivory services can now be deployed as
REST/JSON or SOAP based services, or as services to be invoked by other mainframe applications, all
under the control of the Ivory runtime component, Ivory Server. The SOAP services are documented with
WSDL and the REST/JSON ones with OpenAPI.

Ivory Studio is PC-based while Ivory Server can be deployed locally on the mainframe or externally on a
distributed platform. The choice of Ivory Server location will depend on considerations like mainframe load
restrictions and the underlying structure of the services. For the mainframe, Ivory Server can run within
CICS, in its own region or in Linux on Z (IFL). Externally, it can run in Windows/Java or Linux/Java
environments or in an OpenShift or Docker container.

 Page 6	

Ivory can build APIs for CICS, IMS, 3270, Batch, IDMS and Natural mainframe systems, and it also provides
orchestration support for building composite APIs from multiple systems of record applications. This
orchestration support provides the flexibility to optimize the API, for example to reduce traffic between
different systems. Ivory Function support, a light scripting capability, broadens orchestration and control
options. The API creation process is carried out using wizards in Ivory Studio. Copybooks describing the
data inputs and outputs to the systems of record can be mapped graphically to the API formats, and a drag
and drop facility provides the orchestration support. Access is achieved using one of several mainframe
features such as CICS COMMAREAs / Channels and Containers, IMS Connect, or even direct 3270 access
where screen-scraping is desirable. This 3270 support includes a recording wizard to turn existing 3270
flows including BMS maps into Ivory metadata. Ivory also provides testing tools for both unit and regression
testing, and also supports open source tooling such as Postman, SoapUI and SwaggerUI.

Security depends on whether the Ivory service is deployed as a SOAP or RESTful web service. In the SOAP
case Ivory uses the security information from the SOAP header, while in the REST/JSON deployment Ivory
supports the use of JSON Web Tokens (JWTs). The JWT is generated on authentication and then passed
for subsequent service requests.

Comments

Mainframe-oriented service
creation

Comprehensive support eg CICS Channels and COMMAREAs, IMS
conversational and non-conversational, 3270 access, batch

Bottom-up and top-down
service development

Unusually, Ivory provides equally effective support for both top-down and
bottom-up design methodologies

Support for web services

Ivory supports REST-based and SOAP based web services, with
interfaces described in OpenAPI and XMLdocs

Minimal code generation

Almost everything in Ivory is done without any code generation. The only
code actually produced is XML for internal Ivory use

Automation facilities

Automation support includes a light scripting facility as well as input/output
exits for validation etc.

Language support

Support for PL/1, COBOL

Mainframe systems coverage

Comprehensive coverage, including CICS, IMS, 3270, batch, IDMS, data
sources

Added-value orchestration

Ivory offers a fairly standard graphical orchestration / workflow
specification tool for Windows, all as part of the one product

Ease-of-use

The wizard-based approach and the lack of code generation combine to
make Ivory particularly quick and simple to use

API Ecosystem support

Basic support

Testing tools

Test facility for Ivory services and orchestrations, including support for a
wide range of open source test tools like Postman, SwaggerUI and
soapUI

Governance and lifecycle
support

Support for bringing Ivory services online or offline

Mainframe experience As 30-year veteran mainframe specialists, GT Software offers a detailed

 Page 7	

understanding of mainframe technology with all its intricacies and quirks

API analytics support

As provided through the underlying mainframe systems eg CICS, IMS,
MVS

Admin support for API
ecosystem

Start and stop of Ivory services

Security

Support for SOAP-based security and also JSON Web Tokens; also uses
security features in the underlying mainframe systems

Monitoring and problem
determination

Logging is through the underlying mainframe systems. The Ivory test
facility provides an environment for testing and tracing Ivory service flows
and orchestrations

Integration with existing
management framework

Through underlying mainframe systems

Bi-directional support

Strong bi-directional support including external and internal consumption
of services

Choice of processing location

Comprehensive support for running Ivory execution in CICS, batch, other
z/OS partition or off-mainframe

Performance / scalability

Optimized performance through choice of processing location, such as in
CICS, batch, zIIP offload

Exploit native operating
system high performance
options

Ivory can use port sharing in a multi-server environment to provide high-
performance throughput and failover support

Figure 4: GT Software Ivory Service Architect assessment

 Page 8	

HostBridge
HostBridge was founded in 2000 with the main aim of helping IBM mainframe CICS users to leverage their
CICS programs and transactions in non-mainframe environments and distributed environments. The
HostBridge offerings are examples of mainframe-specific integration middleware. In mainframe API terms,
the focus area for this assessment, this means that HostBridge aims to make CICS transactions available as
web services that can then be used by generic Application Managers to create APIs.

Generic API Middleware

API users / developers

SOAP / REST web service support

Basic composition and orchestration

Developer tools

API Management
services

DataProcesses Applications
(eg CICS/IMS/Batch)

Mainframe systems of record

Mainframe-specific API
Middleware

Composition / Orchestration

Platform security

Access to mainframe systems of record

System Management

DevOps

Generic API
Management

Tools

Mainframe
Specific

API Tools

Mainframe

External Systems

HostBridge

Figure 5: HostBridge’s position in the mainframe API architecture

HostBridge products
The main HostBridge product is HB.js. This is the main engine for developing, composing, deploying and
operating CICS transactions as web services or through Javascript scripts. HostBridge also offers HB Base
XML which converts CICS transactions to XML, so that calling applications can easily access CICS data in
the flows.

HB.js includes a runtime that runs inside a CICS region on the mainframe together with a development
environment, HostBridge Eclipse IDE. Using the IDE, the user can use a screen-scraping approach for
terminal-oriented CICS transactions or a more programmable method for COMMAREA-based access or for
DB2, VSAM or DL/I data. The screen-scraping approach is a bit more advanced than typical screen scrapers
of the past in that it uses metadata to decouple the field contents from the positions on the screen based on
the identifier for that particular screen. This means that a simple change to field positioning on the screen
does not require a change to the linkage. In addition, the ability to orchestrate flows within the mainframe
means that conversation-heavy CICS transactions can be handled without constant to and fro trips from the
mainframe to an external mapper and back again as is the case for more primitive screen scraping offerings.
HB.js is not limited to the screen-scraping approach though. It also supports driving CICS programs through
COMMAREAS and can interoperate with IBM MQ.

If the user is interested in screen scraping, HostBridge offers a Transaction Explorer tool in the IDE which
replicates the CICS screen flows from a live CICS transaction, assisting with navigating and planning the
screen-scraping solution. HostBridge IDE also includes a test service which can be run in conjunction with
Postman as a way to test and debug web services, although this of course requires separate product

 Page 9	

downloads. As far as security is concerned, running in CICS ensures that the HB.js runtime can fit in with
security managers like RACF, ACF/2 and TopSecret, and it also supports SSL and digital certificates.

The process of defining and building CICS-based web services is quite complicated. It is largely done by
defining tables, XML files and maps, and requires some skill to use effectively. It is also important to
recognize that the HB.js runtime runs within the CIC region on the mainframe, and is designed for CICS
programs and transactions. There is no option to run it off-mainframe and it is not designed to handle other
mainframe environments like IMS or batch.

Comments

Mainframe-oriented service
composition

Support is limited to CICS applications

Bottom-up and top-down
service development

Both supported at a basic level

Support for web services

Support for RESTful and SOAP-based web services, using JAVA
class libraries in Javascript

Minimal code generation

Automatic code generation generates little code, although Javascript
code is required for more complex services

Automation facilities

Since HB runs in CICS, it can benefit from some of the CICS
automation facilities

Language support

All CICS languages supported

Support for additional
mainframe resources

Since HB runs in CICS, all mainframe support is CICS-centric

Added-value orchestration

Composite flows can be built to bundle up mainframe processing
and reduce traffic, but automation requires Javascript

Ease-of-use

Building the required maps and files requires quite a lot of manual
effort and a reasonable amount of technical skill, while Javascript
skills may be needed for complex services

API Ecosystem support

Running in CICS provides security and monitoring, but there is
nothing outside the mainframe

Testing tools

The HB Service Test together with Postman offers a very usable and
effective test harness for checking out the web services

Governance and lifecycle
support

Life cycle management is supported

Mainframe experience

HostBridge is dedicated to the mainframe, so has definite mainframe
skills. Having said that, these skills are primarily with CICS since the
product runs under CICS

API analytics support

Nothing specific other than offered for CICS in general

Admin support for API
ecosystem

Standard administration tools provided

 Page 10	

Security

SSL is supported, and within the CICS region the runtime can work
with most mainframe security managers

Monitoring and problem
determination

Since the runtime runs in the CICS region, CICS tools can provide
some level of monitoring

Integration with existing
management framework

Through underpinning CICS region

Bi-directional support

None

Choice of processing location

The HostBridge product runtime runs within the CICS region.

Performance / scalability

Since it runs within CICS, HB.js can package up activities to avoid
unnecessary traffic. The screen-scraping approach generally does
not scale well though

Exploit native operating
system high performance
options

Support through underlying CICS functionality

Figure 6: HostBridge HB.js assessment

 Page 11	

IBM
IBM provides its own generic API management capabilities through its IBM API Connect offering, delivering
the expected set of functions for administering, securing, managing, testing, monitoring and analyzing APIs
and their usage. As far as the scope of this assessment is concerned, however, the key offering is IBM z/OS
Connect Enterprise Edition (EE) and its related products. The IBM z/OS Connect EE offering provides IBM’s
mainframe-specific API enablement facilities that produce make available mainframe systems of record APIs
to its IBM API Connect tools.

Figure 7: IBM API Connect and z/OS Connect positioned in the mainframe API architecture

IBM z/OS Connect EE
The IBM z/OS Connect Enterprise Edition (EE) offering is designed for building APIs for system of record
applications. z/OS Connect EE runs in its own z/OS Liberty address space, and is built around the concept
of ‘service providers’ that provide access to the SoR applications. It includes an IMS and a WOLA
(WebSphere Optimized Local Adapter) service provider, as well as an SDK for building a custom service
provider that can work with other mainframe environments such as third party systems. The WOLA service
provider supports access to CICS and Batch. However, it should be noted that the WOLA support requires
Liberty, making it another moving part to have to handle.

z/OS Connect EE requires a set of Service Archive (SAR) files for the APIs to be offered. These SAR files
provide all the information needed to deploy the services and enable them as JSON assets. The z/OS
Connect API Toolkit is the main development environment for z/OS Connect EE activities such as creating
SAR files and defining and deploying the RESTful APIs. For CICS applications, for example, the COBOL
copybook describing the COMMAREA can be imported and then redacted as required, ensuring only the
required information is shown. A menu-based facility is used to create the mappings between JSON and
SAR data formats. When creating the API, versioning is supported to allow existing APIs to be updated.
When the API is produced, Swagger documentation is also created and this can now be used via the
Swagger UI to test the API and check the resultant data flows. Once validated, the API can now be deployed
directly from the API Toolkit.

 Page 12	

At execution time, there are a number of user exits and options for added value. For example, the user can
develop Interceptors using the toolkit which provide pre-processing exits. The z/OS Connect EE package
includes pre-built ones for audit, authorization (LDAP, SAF) and logging of the input request. In addition,
there is an exit before the JSON is transformed to the format for the system of record applications. This can
be used to manipulate information as HTTP headers, for instance, to set up JSON defaults, or any other pre-
transformation activities. All major mainframe languages are supported, and z/OS Connect EE also offers bi-
directional support where a mainframe system of record application can call an external API using the API
Requester support.

Once the RESTful APIs have been created, they can be utilized from IBM API Manager which provides the
standard generic API management features like orchestration, management, monitoring, analyzing, securing
and monetizing APIs. However, since this is a separate product package it increases the complexity of the
solution. As a result, where API Manager is required in the following assessment, the solution has been
marked down since this review focuses on the mainframe API middleware.

Comments

Mainframe-oriented service
composition

Support for IMS, CICS, DB2 and Batch. Other mainframe systems can
be custom-built using the provided SDK

Bottom-up and top-down
service development

Both supported

Support for web services

IBM z/OS Connect EE creates RESTful APIs, but can consume other
web services / APIs

Minimal code generation

Minimal code generation

Automation facilities

There are some utilities for optimizing the service definitions and
bindings

Language support

Built in support for COBOL, PL/1 and C

Support for additional
mainframe resources

Broker (MQ) access also supported

Added-value orchestration

Orchestration requires the API Manager product

Ease-of-use

Various utilities carry out a lot of the manual work, but the process is
still rather manual and menu-driven

API Ecosystem support

IBM Z/OS Connect EE works closely with IBM API Manager,
supporting all of the main aspects of an API Ecosystem

Testing tools

APIs created by z/OS Connect can be tested directly using the
Swagger UI

Governance and lifecycle
support

Combined with IBM API Manager, IBM z/OS Connect EE provides
strong governance and lifecycle support

Mainframe experience

Naturally, IBM has enormous mainframe experience

 Page 13	

API analytics support

IBM API Manager provides all the analytics support for mainframe
APIs

Admin support for API
ecosystem

IBM API Manager and z/OS Connect EE provide full administration
support

Security

SAF and LDAP security are directly supported. In addition, IBM API
Manager provides more security services

Monitoring and problem
determination

Mostly handled by IBM API Manager rather than IBM z/OS Connect
EE

Integration with existing
management framework

Through IBM API Manager

Bi-directional support

Support for calling RESTful APIs from z/OS systems is provided

Choice of processing location

IBM z/OS Connect EE runs in its own Liberty address space. The API
Toolkit can run in a Windows environment

Performance / scalability

Good performance and scalability

Exploit native operating
system high performance
options

IBM can use any of its native options since z/OS Connect runs in its
own mainframe region

Figure 8: IBM z/OS Connect EE assessment

 Page 14	

MuleSoft
MuleSoft was founded in 2006 as an IT integration vendor. It is probably best known for its Mule Enterprise
Service Bus (ESB), but it has broadened its range of offerings considerably over the last ten years. The
MuleSoft Anypoint Platform is its ESB-based integration suite used for API development, and fits in the
mainframe API reference architecture as depicted in the diagram below.

Figure 9: MuleSoft Anypoint’s position in the mainframe API architecture

MuleSoft Anypoint
MuleSoft Anypoint is a fairly comprehensive API Management platform. It provides a wide range of generic
API management tools for API development, simulation, testing, tracking and reporting. APIs can be
orchestrated together using the MuleSoft Flow Designer, and Anypoint also offers analytics capabilities. It
has its own DataWeave language to deal with mapping data structures between systems, and for
transactional support it now uses the open-source Bitronix transaction manager in place of its original choice
of the JBoss one. APIs are documented with the RAML modeling language, which is MuleSoft’s preferred
approach, but there is an import/export function to support Swagger.

However in terms of Mainframe API enablement, which is the focus of this research, MuleSoft provides the
CICS Transaction Gateway (CTG) Connector and the IBM MQ Connector. Anypoint Connectors provide the
local agent to handle interfacing with specific target environments, and the CTG Connector was provided
earlier this year as an agent for integrating CICS applications, either through channels and containers or
COMMAREAs. The IBM MQ Connector is an agent that can interface with IBM MQ, enabling the calling
application to read or write messages to the IBM MQ queues.

The first requirement to use the Anypoint CTG Connector is to install the IBM CICS Transaction Gateway.
Once this is done, the developer can configure the Connector and import data structures for DataWeave to
process to transform the field information between the different formats. The Anypoint Studio tools to
achieve this are fairly manual in operations. Authentication happens within the Connector using the IPIC
protocol to link with the CICS regions over TCP/IP. SSL is also supported. The user can then specify
whether to use CICS channels and containers or CICS COMMAREAs for the integrations, although data

 Page 15	

transfer in the COMMAREA case is limited to 32KB. If transactional integrity is required, Anypoint relies on
the use of a Bitronix Transaction Manager to provide XA facilities.

The MQ Connector is rather more basic. By providing a Connector to access an IBM MQ broker, MuleSoft
has enabled an Anypoint application to interface with IBM MQ at the pub/sub or listen/reply levels. This
makes it possible to utilize any target application that has been IBM MQ-enabled,

Comments

Mainframe-oriented service
composition

Support is limited to CICS or MQ-enabled applications

Bottom-up and top-down
service development

Both supported at a basic level

Support for web services

Support for RESTful and SOAP-based web services, with RAML or
Swagger documentation

Minimal code generation

There is quite a bit of manual effort required to bring in the schemas and
map them as required for using the CTG. Using the MQ Connector will
require target applications to be MQ-enabled

Automation facilities

Some runtime automation support

Language support

All CICS languages supported

Support for additional
mainframe resources

Support for CICS applications and any MQ-enabled resources

Added-value orchestration

Anypoint provides good orchestration support

Ease-of-use

Using the CTG is fairly manual, and for non-CICS applications they
would need to be message-enabled

API Ecosystem support

Good support for security, testing, monitoring and general administration
at the off-mainframe level, but nothing inside the mainframe

Testing tools

A range of testing options included, as well as simulation support

Governance and lifecycle
support

Anypoint provides fairly comprehensive life cycle management tools

Mainframe experience

Until 2018, the only mainframe support was through the MQ connector.
MuleSoft has little mainframe experience, although they do work closely
with IBM when required

API analytics support

Anypoint has a range of monitoring and analytics offerings, although of
course these are all for the off-mainframe environment

Admin support for API
ecosystem

Standard administration tools provided

Security The Anypoint CTG connector uses the IP interconnectivity (IPIC)

 Page 16	

protocol and also supports SSL

Monitoring and problem
determination

Anypoint provides PD tools, but not specifically for the mainframe

Integration with existing
management framework

Through underlying mainframe systems

Bi-directional support

None

Choice of processing location

The Anypoint CTG Connector runs on the mainframe

Performance / scalability

Anypoint provides various monitoring tools. Whether using the IBM CTG
or IBM MQ Connector, scalability should be unaffected

Exploit native operating
system high performance
options

Support through underlying mainframe systems, eg CICS, MQ

Figure 10: MuleSoft Anypoint assessment

 Page 17	

OpenLegacy
OpenLegacy is a very young company, founded in 2013. It offers open source software for API integration
and management. OpenLegacy offers both generic application management capabilities as well as specific
support for legacy applications, primarily for IBM AS/400 but also with some IBM mainframe support. The
diagram below illustrates where OpenLegacy fits within the Lustratus mainframe API architecture.

Figure 11: OpenLegacy’s position in the mainframe API architecture

OpenLegacy products
The main OpenLegacy offering is its API Software for API Integration and Management suite. As an open
source project, the OpenLegacy software is unsurprisingly heavily geared to standard environments. It is
based on a Java stack, embracing such initiatives as Eclipse, Tomcat, Maven, Spring, OAuth and Swagger.
Its aim is to enable the user to build APIs that can be used as SOAP or RESTful web services or in Java
scripts. On the API Management side it offers a management console as well as monitoring to track metrics
such as API usage, and analytics to provide a more detailed understanding. The wizard-based approach
used by the API Development tool leads the developer through the necessary steps to create and deploy the
API.

As far as the scope of this assessment is concerned, being focused on mainframe API enablement, the key
components are the API Connectors. The principle behind these connectors is to provide a way to extract
key metadata from the mainframe to create a Java API. Once the metadata is gathered, the OpenLegacy
software even makes it possible for the user to change the business logic in the API rather than having to
return to the mainframe. OpenLegacy is also a proponent of microservice architectures, and it enables the
user to package mainframe activities into the microservices. The main artefacts created by the OpenLegacy
tool are POJOs (Plain Old Java Object) that can then be used within scripts or through SOAP or RESTful
APIs.

When creating the APIs, the user has to specify what the source is for the core code and what form will be
used for delivery. So for example the delivery destination might be a SOAP service, a RESTful service or a
Java API. Mainframe application coverage includes 3270 screen-based access, IMS applications through
IBM IMS Connect, SOAP or REST services and mainframe remote procedure calls (RPCs). In the CICS

 Page 18	

case for instance, this means an API could be built to access a CICS transaction through screen-scraping, a
web service if one has already been created or through the CICS RPC support. OpenLegacy-created
services from multiple back ends can be orchestrated together to provide composite services with the
Eclipse IDE.

In general terms, OpenLegacy mainframe API enablement provides reasonable levels of automation but
does have some more manual and technical areas of usage. While it has wizards to carry out tasks like
extracting COMMAREA information from COBOL copybooks and building a metadata representation of it,
the mechanics of doing this are menu-based rather than visual. Having said that, OpenLegacy enables rapid
API front-ending of green screen applications through the use of built-in design themes and discovery
wizards. But as usual with screen-scraping, this approach is best limited to simple transactions with few
conversational menus.

Comments

Mainframe-oriented service
composition

Support covers 3270 or RPC access, or existing web services

Bottom-up and top-down
service development

Both supported

Support for web services

Support for RESTful and SOAP-based web services

Minimal code generation

Minimal code generation

Automation facilities

Offers good automation of API Management tasks and also some
service generation

Language support

All main mainframe languages supported

Support for additional
mainframe resources

OpenLegacy supports RPC or 3270 access of mainframe applications,
IMS Connect for IMS applications and any existing mainframe web
services

Added-value orchestration

The Eclipse IDE enables orchestration of services in different back
end systems

Ease-of-use

There is quite a bit of automation in the process, but the building of the
metadata from the mainframe information still has technical elements

API Ecosystem support

Standards based security including OAuth and Java security. Also
includes API monitoring and reporting

Testing tools

A number of test tools are provided that result in a powerful test
harness for unit testing and continuous system testing

Governance and lifecycle
support

Good support, including analytics for a more complete understanding
of API usage

Mainframe experience

OpenLegacy relies on a standards-based, open source approach to
mainframe API management, utilizing technologies such as RPCs. As
a result, it is not a mainframe specialist company

API analytics support Monitoring and analytics for a range of API usage metrics

 Page 19	

Admin support for API
ecosystem

As a generic Application Manager, broad API admin support is
provided including role management and API management

Security

Standards-based approach includes OAuth and LDAP security

Monitoring and problem
determination

Generally only provided at the generic level and not specifically within
the mainframe

Integration with existing
management framework

Standards-based

Bi-directional support

None

Choice of processing location

The Connectors run in the mainframe but the main work is done in a
Java environment, located on premise, in the client or in the cloud.

Performance / scalability

The approach of packaging everything needed for the service in one
micro-application should help to optimize performance for some
workloads

Exploit native operating
system high performance
options

Nothing specific since the approach is very standards-based

Figure 12: OpenLegacy API Software assessment

 Page 20	

Rocket Software
Rocket Software was founded in 1990. It has built a wide portfolio of solutions through acquisition and
development. In 2006 Rocket acquired Seagull’s BlueZone and LegaSuite integration products, providing
terminal emulation and screen-scraping respectively. More recently, the LegaSuite functionality has been
brought together with API management capabilities to become Rocket API. For the purposes of this study of
mainframe API tools, Rocket API will be the focus product.

The diagram below shows where Rocket API fits in the API architecture as laid out in the Lustratus report
“Best-of-Breed Mainframe API Enablement”:

Figure 13: Rocket API’s position in the mainframe API architecture

Rocket API
Rocket API provides a wide range of generic API Management services, although these are currently geared
more from an enterprise point of view than from an API Economy one. As an example, at the time of our
research Rocket API does not provide API documentation in Swagger form, although there are a number of
user-driven initiatives to make this happen. There are also limited tools for managing third party developers.
However, given the focus of this report is API enablement of IBM mainframes, the only mainframe-specific
consideration with record is the provision of 3270 data stream mapping, or screen-scraping.

Screen-scraping is one of the oldest forms of mainframe integration, along with terminal emulation and file
transfer. To put it simply, screen scraping is all about making the mainframe application think it is talking to a
3270 screen. When the local code wants to drive a mainframe application, the desired 3270 data stream is
set up as if it had been typed into a mainframe green screen. Similarly, when the result is sent back to the
green screen to display, the 3270 data stream is mapped into whatever makes sense to the calling
environment.

The appeal is obvious; by building 3270 data streams to drive mainframe applications, the applications can
be driven without any changes to the mainframe. In addition, the internals of those mainframe applications
can change without any effect on external callers, unless the 3270 data streams change of course. However,
there are serious drawbacks which tend to limit the applicability of this approach to certain specific

 Page 21	

scenarios. If the mainframe application is simple, for example a price lookup for a particular product number,
then there is only one green screen to map and the call is a simple in/out to the mainframe. But CICS
applications in particular are often far more conversational, with the user clicking options on a screen to then
be carried to another screen and so on. The screen scraping approach requires not only the mapping
between the 3270 data streams and the local user interface technology, but also a round trip to/from the
mainframe for every step. As a result, screen scraping tends not to be scalable and remain rather inflexible
and brittle.

Mainframe API functionality
Rocket API consists of a number of tools for supporting z/OS-based mainframe APIs. The Windows-based
Rocket API Builder provides a wizard-like tool for mapping between green screen fields and data and the
desired calling environment. There is also a tool for optimizing repetitive mappings, the API Flow Recorder.
Once created, the API is deployed through the Rocket Access and Connectivity hub which can run on a
variety of non-mainframe platforms including Windows, IBM , UNIX and Linux. At the time of this research,
Rocket does not offer Swagger-based documentation of the APIs. It should also be noted that CICS support
requires a Liberty server, meaning more moving parts to control.

Composite APIs can be constructed graphically with the API System Orchestration tool. It is worth
mentioning that although not specifically part of the mainframe API scenario, Rocket API provides a range of
monitoring and management tools to manage APIs in general. This includes role-based security, API user
tracking and a prioritization mechanism.

So how does Rocket API match up to the Lustratus best-of-breed criteria? The Lustratus criteria are grouped
into three sections, the first being Development and Deployment.

Comments

Mainframe-oriented service
composition

Support is limited to 3270 datastream access to mainframe
applications, ideally single pass ones since conversational
transactions will require a lot of comms resources travelling back and
forth

Bottom-up and top-down
service development

Both supported at a basic level but again restricted to using 3270 data
streams

Support for web services

Support for RESTful and SOAP-based web services, although there is
no Swagger publishing support at this time

Minimal code generation

No code required apart from the files controlling the 3270 datastream
mapping

Automation facilities

Support to accelerate mapping of repetitive field structures

Language support

Since no code is required on the mainframe, there is no requirement
for language support as long as 3270 screens are used

Support for additional
mainframe resources

Rocket provide JDBC access to data, but application interaction is
limited to those that use 3270 data streams

Added-value orchestration

Fairly standard orchestration provided, but all outside the mainframe

Ease-of-use The mapping tools and lack of code help to make the 3270 mapping

 Page 22	

easier, but forcing the interaction to be at the screen interface means
conversational transactions will quickly get complicated

API Ecosystem support

Good support for security, monitoring and general administration at the
off-mainframe level, but nothing inside the mainframe

Testing tools

Basic testing tools provided

Governance and lifecycle
support

Decoupling the caller from the mainframe enables mainframe
transaction logic to change transparently, as long as they do not
require screen changes

Mainframe experience

Rocket has grown primarily through acquisition and supports a wide
range of platforms, but it has little z/OS mainframe skills

API analytics support

Rocket has a range of monitoring and analytics offerings, although of
course these are all for the off-mainframe environment

Admin support for API
ecosystem

Standard administration tools provided.

Security

Uses security features in the underlying mainframe systems

Monitoring and problem
determination

Logging is through the underlying mainframe systems

Integration with existing
management framework

Through underlying mainframe systems

Bi-directional support

None

Choice of processing location

Rocket API does not have any component residing on the mainframe.
Processing is all off-host

Performance / scalability

Performance and scalability will suffer with more complex and more
heavily conversational transactions

Exploit native operating
system high performance
options

Support through underlying mainframe systems, eg CICS, IMS

Figure 14: Rocket API assessment

 Page 23	

Summary
This assessment looked at six solutions to mainframe API-enablement, making the potential selection task
appear rather daunting. However, by first giving some thought to the aims of the mainframe API enablement
project, the task can probably be simplified considerably. While there is no hard and fast rule, the general
principles apply; if the aim is to provide access to a few specific mainframe query-style applications, with the
longer term objective being to perhaps even replace the mainframe, then a simple approach such as screen
scraping may well suffice. But if there is scope either now or in the future for a broader API enablement
strategy to get the best possible value from the massive assets embodied in the mainframe, a mainframe-
specific solution that is flexible and comprehensive is almost certainly the safest approach. For example,
offering CICS application access may be all that is required today, but if in the future it is necessary to
access other systems such as batch, IMS or third party packages then having to switch supplier will be
costly and inefficient.

The other factor that must be taken into account is the availability of mainframe skills, both internally and
within the chosen supplier. While a number of mainframe API enablement tools claim not to require any
mainframe skills, the reality is that for anything other than a very simplistic application example there will
almost certainly need to be some level of mainframe expertise and understanding required. It is not so
important whether these skills are available internally or from the supplier, but it is important that they exist
and are accessible to mitigate any risk.

The checklist tables should point the way to knowing what questions to ask while carrying out the vendor
selection process, but they remain simple guidelines. In the end, companies must draw their own
conclusions based on their own analysis.

 Page 24	

About Lustratus Research
Lustratus Research, founded in 2006, aims to deliver independent and unbiased analysis of global software
technology trends for senior IT and business unit management, shedding light on the latest developments
and best practices and interpreting them into business value and impact. Lustratus analysts include some of
the top thought leaders worldwide in infrastructure software.

Lustratus offers a unique structure of materials, consisting of three categories—Insights, Reports and
Research. Insights offer concise analysis and opinion, while Reports offer more comprehensive breadth and
depth. Research documents provide the results of practical investigations and experiences. Lustratus prides
itself on bringing the technical and business aspects of technology and best practices together, in order to
clearly address the business impacts. Each Lustratus document is graded based on its technical or business
orientation, as a guide to readers.

Terms and Conditions
© 2018—Lustratus Research

Customers who have purchased this report individually or as part of a general access agreement, can freely
copy and print this document for their internal use. Customers can also excerpt material from this document
provided that they label the document as Proprietary and Confidential and add the following notice in the
document: “Copyright © Lustratus Research. Used with the permission of the copyright holder”. Additional
reproduction of this publication in any form without prior written permission is forbidden. For information on
reproduction rights and allowed usage, email info@Lustratus.com.

While the information is based on best available resources, Lustratus Research disclaims all warranties as
to the accuracy, completeness or adequacy of such information. Lustratus Research shall have no liability
for errors, omissions or in adequacies in the information contained herein or for interpretations thereof.
Opinions reflect judgment at the time and are subject to change. All trademarks appearing in this report are
trademarks of their respective owners.

Steve Craggs trading as Lustratus Research
www.lustratus.com

Ref SC/LR/31675249V2.0

